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A discriminant analysis technique using wavelet transformation (WT) and in°uence matrix
analysis (CAIMAN) method is proposed for the near infrared (NIR) spectroscopy classi¯-
cation. In the proposed methodology, NIR spectra are decomposed by WT for data com-
pression and a forward feature selection is further employed to extract the relevant information
from the wavelet coe±cients, reducing both classi¯cation errors and model complexity. A
discriminant-CAIMAN (D-CAIMAN) method is utilized to build the classi¯cation model in
wavelet domain on the basis of reduced wavelet coe±cients of spectral variables. NIR spectra
data set of 265 salviae miltiorrhizae radix samples from 9 di®erent geographical origins is used
as an example to test the classi¯cation performance of the algorithm. For a comparison,
k-nearest neighbor (KNN), linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA) methods are also employed. D-CAIMAN with wavelet-based feature selection
(WD-CAIMAN) method shows the best performance, achieving the total classi¯cation rate of
100% in both cross-validation set and prediction set. It is worth noting that the WD-CAIMAN
classi¯er also shows improved sensitivity, selectivity and model interpretability in the
classi¯cations.
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1. Introduction

Near infrared (NIR) spectroscopy has the advan-
tage of being fast, robust, nondestructive and es-
pecially suitable for the online application. With the
development of modern instruments and chemo-
metrics, NIR spectroscopy has been widely applied
for the quantitative and qualitative analysis in large
areas, such as agriculture, pharmaceuticals, food,
textiles and polymer production.1 However, the
physical and chemical information cannot always be
extracted straightforwardly from the spectra due to
the existence of band overlapping, multicollinearity,
poor signal-to-noise ratio, baseline °uctuations, and
so on. Thus, in order to overcome these di±culties
in NIR spectral analysis, chemometrics has to be used
for preprocessing, modeling, validation, etc. A main
part of chemometrics is multivariate data analysis,
which is essential for qualitative and quantitative
assays based on NIR spectroscopy. Statistical classi-
¯cation with NIR data has been used in a number of
scienti¯c publications and practical applications.1,2

Thanks to the modern techniques of analysis;
objects described by a large number of variables
(i.e., absorbance at de¯ned wavelengths or wave-
numbers) can be easily measured in a short time.
However, for high-dimensional data, singularity
problems arise if the variables are highly correlating
or if the number of variables exceeds the number of
samples available for analysis. In this situation, the
most common classi¯er, one based on conventional
linear discriminant analysis (LDA),3 is of limited
use. Then, multivariate chemometric techniques
with a dimension reduction, e.g., principal com-
ponent regression (PCR) and partial least squares
(PLS),4 become necessary in order to extract
the most relevant information from spectroscopic
data. And a group of classi¯cation methods, such
as principal component analysis (PCA) or partial
least squares discriminant analysis (PLS-DA),
soft independent modeling of class analogy (SIMCA),
and so on, have developed and received attention
recently.5–9 However, one will obtain the discriminant
di±cultly or reach an unreliable model when the
spectrum is dominated by a varying background or
some nonlinear relations exist with the response.10

The redundant information in the spectral data
and information irrelevant to the response will
worsen the quality of the model and the precision
of the prediction. Various signal preprocessing
techniques, including variable selection,7 orthogonal

signal correction (OSC),11 uninformative variable
elimination (UVE),12 frequency-domain processing
using wavelet transformation (WT),13 have been
employed to eliminate background and noise to
improve the robustness and reliability of the model
in both calibration and classi¯cation. WT has been
proven to be a powerful tool for dimension re-
duction and noise removal.14 Vannucci et al.15 have
used wavelet-based feature selection technique to
classify the NIR and mass spectra. In combination
with WT, a lot of algorithms, such as wavelet
transformation- uninformative variable elimination
(WT-UVE),16 wavelet transformation- modi¯ed
uninformative variable elimination (WT-MUVE),17

wavelet orthogonal signal correction (WOSC),10

wavelet packet transform for e±cient pattern rec-
ognition of signals (WPTER),18 etc., have also been
proposed and successfully used for NIR calibration
and classi¯cation.

Classi¯cation and in°uence matrix analysis
(CAIMAN)19 is a new classi¯cation technique based
on the in°uence matrix (also called leverage matrix).
Since proposed, it has shown excellent performances
with several classi¯cation data sets19 and appli-
cations of geographical classi¯cation.20 Recently, it
has been developed further by Forina et al.21 to
obtain a family of powerful classi¯cation and class
modeling techniques, by adding distances and
leverages to original variables. The method uses a
simple mathematical approach to get the leverage
matrix, the diagonal elements of which provide in-
formation on the in°uence of each sample within the
model. In comparison with other approaches men-
tioned above, there is no assumption on the multi-
normal distribution of the data in CAIMAN and the
classi¯cation model has a good interpretability as
the results can be easily interpreted by analyzing
the leverage and hyper-leverage values. As CAI-
MAN still requires the number of class objects to be
signi¯cantly greater than the number of variables,
wavelet-based feature selection will be employed as
a reliable dimension reduction technique to over-
come this limit.

In the manuscript, we introduced a discriminant
classi¯cation method named discriminant-CAIMAN
(D-CAIMAN) to simultaneously classify the NIR
spectral data of samples. A wavelet-based feature
selection was ¯rst used to compress while retaining
information useful for classi¯cation, and a new
algorithm, WD-CAIMAN, was proposed. NIR
spectra data set of 265 salviae miltiorrhizae radix
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samples from nine di®erent geographical origin was
used as an example to show the classi¯cation per-
formance achieved by the algorithm. For the com-
parison, methods of k-nearest neighbor (KNN),22

LDA and quadratic discriminant analysis (QDA)
are also used.

2. Theory

2.1. In°uence matrix and leverage

A commonly used linear model can be written as

y ¼ X¯þ "; ð1Þ
where X is the data matrix, y is a vector of the
response. By solving the model using linear least
squares, the regression coe±cients ¯ are

^̄ ¼ ðXTXÞ�1XTy: ð2Þ
So the estimated values are

ŷ¼ X ^̄ ¼ XðXTXÞ�1XTy ¼ Hy; ð3Þ
H ¼ X � ðXTXÞ�1 �XT : ð4Þ

In statistics, the matrix H is called hat matrix,
or in°uence matrix, or leverage matrix, which
describes the in°uence each observed variable has
on response variable. The in°uence matrix has a
number of useful algebraic properties and some
practical applications in regression analysis.23,24

The diagonal elements of H, hii, are de¯ned as
leverages which are key elements of the CAIMAN
method.

CAIMAN has been developed with the aim of
representing each class space by using the class in-
°uence matrix and calculating the leverage value of
each object from each class in°uence matrix. Pro-
vided that the size of data matrix X is n� p, col-
lecting n objects belonging to one of de¯ned G
classes and each object has p variables (wavelengths
or wavenumbers for NIR spectra). The basic idea is
to model each class by the corresponding dispersion
matrix estimated by the training objects belonging
to the class. For each class gðg ¼ 1; . . . ;GÞ, the
leverage of the ith object xi is calculated as:

hig ¼ ðxi � x�
gÞT ðXT

gXgÞ�1ðxi � x�
gÞ; ð5Þ

where x�
g is the centroid of class g andXg is the sub-

matrix of size ng � p, collecting the ng centered
objects assigned to the gth class. For the objects in
training set of the class, the leverage are replaced by

the leave-one-out (LOO) estimate, which can be
directly derived from the leverage hig:

h�
ig ¼ hig=ð1� higÞ: ð6Þ

For the meaning of the leverage, it should be
expected that typical characteristic objects of the
class have low leverages, while objects far from the
class have high leverages.19 A classi¯cation rule
based on the minimum leverage is the simplest
leverage-based classi¯er, which exploits the infor-
mation given by a single leverage calculated inde-
pendent of the other classes. This classi¯er is useful
in several cases, but it is not able to properly deal
with nonlinear class separability, and this limit of
the minimum leverage makes it unsuitable to solve
classi¯cation problems characterized by more com-
plex class structure. Therefore, the CAIMAN
approach has been further developed de¯ning a new
mathematical concept called hyper-leverage. For
each ith object, the hype-leverage hhig for class g is
calculated as:

hhig ¼ ðhi � h�
gÞT ðHT

gHgÞ�1ðhi � h�
gÞ; ð7Þ

where hi ¼ ½hi1 ; . . . ;hig; . . . ;hiG�T is the vector of
the G leverages of object i, h�

g is the centroid of
leverages of class g and Hg is the matrix of class
centered leverages, both computed with only the
objects in the training set of the gth class.

For the objects belonging to training set of the
gth class, the LOO estimation of hyper-leverage is
computed as:

hh�
ig ¼ hhig=ð1� hhigÞ: ð8Þ

By projecting the objects in the H-space, the
hyper-leverage makes the relationships among the
classes more apparent by taking into account all the
leverages simultaneously for each object. Therefore,
the hyper-leverage is very useful for classifying
objects especially when there is a nonlinear class
separability in the X-space, which becomes linear in
the H-space. By combining information from
leverages and hyper-leverages, the leverage score is
computed as:

wig ¼ ð1� aÞhig þ a hhig 0 � a � 1; ð9Þ
where a is called trade-o® parameter. When the
value of a is near 0, it indicates that good class
discrimination is directly obtained from the
X-space, while a value near 1 results from more
complex class structures.

Wavelet-based CAIMAN method
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2.2. D-CAIMAN method

Discriminant analysis is a supervised classi¯cation
method which is primarily used to build classi¯-
cation rules for a number of pre-speci¯ed subgroups.
These rules are later used for allocating new and
unknown samples to the most probable subgroup.
Another important application of discriminant
analysis is to help in interpreting di®erences
between groups of samples.3 For the purpose of
discriminant analysis, one of the CAIMAN
methods, called D-CAIMAN, can be used.

In D-CAIMAN, an object is assigned to one of
the prede¯ned class by minimizing the leverage
score:

i ! g if wig ¼ minj¼1;...;Gfwijg: ð10Þ
With the D-CAIMAN classi¯er, all the objects

are always classi¯ed to one of the de¯ned classes.

2.3. Feature selection in wavelet

domain

Data preprocessing, involving data transformation
and/or data reduction can dramatically in°uence
the ¯nal results of recognition. This is particularly
true for spectral data, which contain hundreds or
thousands of highly correlated variables, noise and
irrelevant information. Removing nonrelevant
variability and extracting relevant features from the
initial data set is of vital importance.

The main goal of this paper is to present an
e®ective procedure for classi¯cation of NIR spectral
data. In order to obtain a good estimate of the class
dispersion matrix, the number of class objects
should be signi¯cantly greater than the number of
variables, which is a basic condition for all methods
based on class covariance matrices,3 including
CAIMAN. However, the NIR spectral data are
severely ill-conditioned (with thousands of vari-
ables, i.e., wavelengths), so the classi¯cation
methods cannot be directly applied. This problem
can be alleviated by using a compression technique
to reduce the dimensionality of the data prior to the
variable selection procedures, after that, the selec-
ted features are employed as the input of the clas-
si¯ers. In the present work, a wavelet-based feature
selection method is adopted for this purpose.

The wavelet transform is a multiresolution signal
processing tool which has been successfully utilized
for spectral data analysis in background removing,

denoising, feature extraction and compres-
sion.10,14–18,25 With the transformation by wave-
let, the information contained in original spectra
data can be represented by the wavelet coe±cients.
Compression is achieved by suppressing the wavelet
coe±cients that do not hold valuable information.
Finally, the original data can be explained by only a
small amount of wavelet coe±cients. The number of
wavelet coe±cients to be retained is determined by
a threshold value, which results from a preset
compression ratio (CR), a key parameter in wavelet
compression.26 A high CR is always expected, but
useful information will be lost if too many wavelet
coe±cients are suppressed. On the contrary, keep-
ing much of the information with a lower CR leads
to a low object/variable ratio which will make
classi¯cation methods to fail. Furthermore, a coef-
¯cient that is retained only means it is important to
represent the main information of the original sig-
nals, it still contains irrelevant information for
multivariate calibration. Therefore, a compromising
CR combined with a further suppression of the less
informative ones from the retained wavelet coe±-
cients for compensation, calledwavelet-based feature
selection, is an intelligent procedure. In this paper,
the forward variable selection technique27 is adopted
for further extraction of the relevant information
from the wavelet coe±cient. This method starts with
no variables and adds one variable at a time to
the model, and the inclusion of a variable is based
on the ERLOO (error rate leave-one-out) value, i.e.,
the variables will be entered into the model if ERLOO

is minimized.

2.4. WD-CAIMAN method

A wavelet-based feature selection was ¯rst used for
data compressing while retaining information useful
for classi¯cation, and a new algorithm, WD-CAI-
MAN, was proposed. The detailed procedure of the
WD-CAIMAN method can be described as follows:

(1) WT data compression. For a given wavelet
function and a maximum decomposition level J ,
the wavelet decomposition of each spectrum is
performed to calculate wavelet coe±cients
cW ¼ ½cAJ ; cDJ ; cDJ�1; . . . ; cD1�. Then, small
coe±cients in cW will be suppressed by
thresholding method.28 The number of wavelet
coe±cients to be stored is going to be deter-
mined by a threshold value, which is calculated
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by a preset CR. CR is generally de¯ned by
N=N 0, where N is the data point number of the
original signal and N 0 is the number of the
coe±cients to be retained. For a given CR,
di®erent wavelet functions are compared with
maximum number of decomposition level in
order to achieve optimum compression.

(2) Variable selection in wavelet domain. The for-
ward variable selection technique is adopted for
further extraction of the relevant information
from the wavelet coe±cients. Compared to
forward selection, other variable selection
strategies including backward selection, for-
ward-backward selection, subset selection and
block-addition and block-deletion selection are
normally more complex, and they havenot
showed to obtain better results.29 The forward
selection method adds coe±cients to the model
one at a time. The inclusion of a coe±cient is
based on a Fenter (F to enter value).30 The coef-
¯cients will be entered into the classi¯cation
model if their respective F value is larger than
the speci¯ed Fenter. The F values can be calcu-
lated and tested based on the Wilk's lambda
statistic,27 which is a measure of the quality of
the separation among the classes. LOO vali-
dation procedure will give the ¯nal classi¯cation
model, and the coe±cients will be kept if ERLOO

is minimized.
(3) Build D-CAIMAN model by using the sup-

pressed wavelet coe±cients. First, the leverages
and hyper-leverages are calculated for each class
g by training samples using Eqs. (5)–(8). Then,
leverage score is obtained by Eq. (9) with a leave-
more-out (LMO) cross-validation for the optim-
ization of parameter a (between 0 and 1), which
gives information about the trade-o® between
the leverage and hyper-leverage role in the ¯nal
classi¯cation rule. The procedure is performed as
following: The samples are split into di®erent
cross-validation groups; Once at a time, each
validation group is removed from the training set
and the percentage of wrong assignments in the
cross-validation groups (ERCV) is calculated;
the parameter a is chosen on the basis of the
results by minimizing the error rate. Finally, the
D-CAIMAN classi¯er is built with the retained
wavelet coe±cients and parameter a.

(4) Discriminate unknown samples byWD-CAIMAN
model. Obtain the suppressed wavelet coe±-
cients of the prediction data set by steps (1) and

(2) using the same parameters, and perform
prediction by using the D-CAIMAN classi¯er
built in step (3). WD-CAIMAN makes all the
objects always be classi¯ed to one of the de¯ned
classes.

3. Experimental Methods

Herbal medicines, with their e®ective pharmaco-
logical activities and low toxicity have been playing
an important role in clinical therapy in China. The
quality and e±cacy of herbal medicines vary with
geographical areas of production. It is urgently
needed to develop a reliable method for the geo-
graphical origin identi¯cation which is also of great
importance to the quality control of herbal medi-
cines. Compared with some traditionally used
identi¯cation methods such as chromatography,
NIR spectroscopy technique is simple, rapid and no
sample preparation is needed. It has proved to be
feasible and e®ective for qualitative and quantitat-
ive analysis of herbal medicines.31 In this work, NIR
spectroscopy technique coupled with chemometrics
tools was employed for the fast discrimination of
salviae miltiorrhizae radix according to geographi-
cal origins.

3.1. Sample preparation

A total of 265 samples of salviae miltiorrhizae radix
from di®erent geographical origins in China were
collected. The details of samples are shown in
Table 1. The samples were dried at 60�C for 10min,
then cut and ground into powder. The ¯nal powder
samples were prepared by passing the ground
powder through an 80-mesh sieve.

Table 1. Class, origin and number of the
265 salviae miltiorrhizae radix samples.

Origin Number Class

Bozhou, Anhui 30 C1
Zhongjiang, Sichuan 29 C2
Pingyi, Shandong 29 C3
Yuncheng, Shanxi 30 C4
Yancheng, Jiangsu 30 C5
Anguo, Hebei 28 C6
Xingtang, Hebei 30 C7
Lushi, Henan 29 C8
Shangluo, Shanxi 30 C9

Wavelet-based CAIMAN method
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3.2. Spectra collection and data
processing

NIR spectra of the samples were collected in the
re°ectance mode at 8 cm�1 intervals over the spec-
tral region 4000 � 10; 000 cm�1 with an Antaris
FT-NIR System (Thermo scienti¯c, USA) equipped
with an optical ¯ber. Each sample spectrum was
obtained by averaging 64 scans, and all the spectra
were recorded as the logarithm of the reciprocal, log
(1/R). The mean of the three spectra which were
collected from the same sample was used in the
following analysis steps.

All spectra were randomly divided into a cali-
bration set and a prediction set: 75% of the samples
were the calibration set while the remaining samples
were utilized for prediction set. Each sample was
only used once in one data set. A classi¯cation
model was developed in the calibration set, and the
developed model was evaluated by the prediction
set. MATLAB 7.8 (The Math Works Inc., Natick,
MA) was used for all data analysis. The free CAI-
MAN toolbox32 was applied with MATLAB to de-
rive the D-CAIMAN models.

3.3. Classi¯cation validating

To evaluate the classi¯cation performance of clas-
si¯er, three parameters, ER, Sn and Sp, are used.33

Error Rate (ER) is the percentage of misclassi¯ed
objects, ER% ¼ 1�NER%. Non-Error Rate
(NER) is de¯ned as the percentage of objects cor-
rectly classi¯ed. This parameter is commonly called
sensitivity (Sn), i.e., probability (percentage) of
predicting \yes" given true state is \yes", which
re°ects the ability of a classi¯er to correctly capture
all the objects of the classes. Speci¯city (Sp) is a
parameter which characterizes the ability of the gth
class to reject objects of the other classes after the
application of a classi¯er, which indicates the
probability (percentage) of predicting \no" given
true state is \no".

4. Results and Discussion

The mean spectra of each class for the original data
were shown in Fig. 1. This work aims at exploring
the possibility of using NIR spectra to assign
unknown samples to the correct class. As can be
seen, the NIR spectra of di®erent classes are very
similar: two water absorption bands around 5155

and 7000 cm�1, other intensive bands in the spec-
trum are contributed by the vibration of the second
overtone of the carbonyl group (5352 cm�1), theC–H
stretch andC–Hdeformation vibration (7212 cm�1).
Owing to the complexity of the spectra, the dis-
crimination of nine classes of samples on the basis of
NIR spectra cannot be obtained straightforwardly,
which is apparently shown in the PC score plots
presented in Fig. 2. The C2 and C8 samples are
isolated in the PCs space and can be well separated
along PC2. However, even if the NIR spectra seem
to contain some information useful for distinguish-
ing the di®erent classes, there remains a consider-
able overlap among the other seven classes.

4.1. Wavelet compression

Determination of right threshold value is a key step
for compression procedures. In this paper, only hard

-4 -3 -2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

 

 

Fig. 2. Plot of ¯rst two principal components (PCs) obtained
by PCA of NIR spectra.

Fig. 1. The mean spectra of each class for the original data.
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thresholding was used because the aim of com-
pression was to remove the small coe±cients. For
this purpose, three thresholds, CR ¼ 8, 16 and 20,
with which 195, 97 and 78 coe±cients were retained
respectively, were set to investigate the e®ect at
di®erent CR. The root mean square (RMS) errors
between the original spectrum and reconstructed
spectra were 3:89� 10�4; 7:53� 10�4 and
9:58� 10�4, which indicated that there was almost
no di®erence between the original and reconstructed
spectra. As stated in Sec. 2.3, a compromising CR ¼
16 was the best choice for the next feature selection
procedure.

Di®erent wavelet functions and decomposition
level will result in di®erent e®ects of compression. In
order to obtain optimal compression, the RMS
errors of the original measured spectrum and
reconstructed signal were investigated with di®er-
ent wavelets and maximum number of decompo-
sition levels for each wavelet. Table 2 summarizes
the RMS by 21 di®erent wavelets (Daubechies 1–10,
Symlet 4–10 and Coie°et 1–4) with maximum de-
composition level for each wavelet and CR ¼ 16. It
can be seen that the \sym5" and \db4" give a
slightly better results for compression, yet the
di®erence among most of these wavelets are not
signi¯cant. Finally, \db4" wavelet was adopted in
the following studies.

4.2. Classi¯cation

After compression by WT, number of variables was
considerably reduced from 1557 to 97. However, the
sample/variable ratios in nine classes are all still
smaller than 0.3, which does not meet the request of
sample/variable ratio for classi¯cation algorithms.
The forward selection has been applied to the
compressed wavelet coe±cients in order to increase
the sample/variable ratio. As explained before, each

variable was sorted according to the Wilk's lambda
value and selected to model a variable once until the
sample/variable ratio larger than 1. KNN, LDA,
QDA and WD-CAIMAN were used on the data, in
order to compare the classi¯cation performances.

As a sample/variable ratio greater than 2 or 3 is
usually suggested, the number of retained variables
should be less than 15 for the NIR data used in this
paper. Classi¯cation error curves for the ¯rst 15
retained variables for the cross-validation of three
classi¯ers, KNN, LDA and QDA, are depicted in
Fig. 3(a). A 10-fold cross-validation for samples in
calibration set was used and the best classi¯ers were
obtained for both three methods. As shown in
Fig. 3(a), ER for the KNN classi¯er is much larger
than the others, reaching a minimum error of
18.18% at 15 variables. LDA and QDA almost have
the same classi¯cation performances, both requiring
13 variables, with a minimum error of 0.51% and
1.01%, respectively. Figure 3(b) shows the external
prediction classi¯cation errors from all three classi-
¯ers by using prediction samples. Determined by
cross-validation, KNN, LDA and QDA classi¯ers
reach optimal classi¯cation errors of 17.91%, 1.49%
and 1.49%, respectively.

In WD-CAIMAN procedures, the LMO tech-
nique was utilized to optimize a value. Speci¯cally,
for each a value (between 0 and 1, with step 0.1),
300 iterations excluding 20% of objects for each
class were performed. The best a value and number
of variables are obtained (see Table 3) when ERLMO

reached to a minimum value 3.1%. In order to com-
pare the resultswith other classi¯cationmethods, the
LOO validation technique was employed with a ¼
0:5 and 13 variables obtained by LMO technique.
Moreover, the models have been tested also with
the external prediction set of samples (see Table 3).
As it can be seen, the results obtained by WD-
CAIMAN are satisfactory with ERLOO and on the

Table 2. RMS between original NIR spectrum and reconstructed spectra by WT with di®erent wavelets and a maximum
decomposition level (CR¼ 16).

Wavelet Max level RMS (�10�4) Wavelet Max level RMS (�10�4) Wavelet Max level RMS (�10�4)

Db1 10 18 Db8 6 6.99 Sym8 6 7.15
Db2 9 7.53 Db9 6 8.22 Sym9 6 7.51
Db3 8 6.19 Db10 6 8.81 Sym10 6 7.79
Db4 7 5.97 Sym4 7 6.10 Coif1 8 7.55
Db5 7 6.08 Sym5 7 5.62 Coif2 9 7.11
Db6 7 7.12 Sym6 7 6.85 Coif3 6 8.00
Db7 6 6.55 Sym7 6 6.83 Coif4 6 9.44
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external prediction set (EREXT) both equal to 0%.
By considering all the performance parameters, i.e.,
ERLOO, ERcv, EREXT, Sn and Sp, the best approach
seems to be WD-CAIMAN on the selected vari-
ables, and KNN on the selected variables gives the
worst results.

4.3. Model interpretation with leverage

(or hyper-leverage) plot

The classi¯cation model obtained by WD-CAIMAN
method has a good interpretability as the results
can be easily interpreted by the leverage plot or
hyper-leverage plot. The leverage plot is basically a
scatter plot obtained by projecting the samples in
the space de¯ned by the leverages referring to two
chosen classes.19,20 Each axis represents a class and

farer the objects are from the axis origin, greater
their distance is from the corresponding class. In-
vestigating the distance between each two classes
depicted in the PCA plot (see Fig. 2), it can be seen
that the classes in group G1¼ fC1, C4, C5, C7g and
group G2¼ fC3, C6, C9g are hard to identify from
each other. Therefore, the leverage plot between
those classes will be plotted to better understand
how the WD-CAIMAN model works.

De¯ne Lij as the leverages (or hyper-leverages)
of Ci samples from Cjði; j ¼ 1; 2; . . . ; 9Þ. The Ci
samples can be successfully identi¯ed from Cjðj 6¼ iÞ
if the following conditions are satis¯ed:

Cd.1: Small values of Lii (i ¼ j);
Cd.2: Large values of Lij (i 6¼ j);
Cd.3: No overlap between ranges of Lii and each
Lijði 6¼ jÞ.

Table 3. Classi¯cation results obtained by WD-CAIMAN, KNN, LDA and QDA with retained wavelet coe±cients.

Calibration Prediction

Methods Number of variables ERað%Þ Sn Sp ERbð%Þ Sn Sp ERc
LMOð%Þ ac

WD-CAIMAN 13 0 100 100 0 100 100 3.1 0.5
KNN 15 18.18 54.55 94.89 17.91 75 94.92 — —

LDA 13 0.51 100 99.43 1.49 100 98.31 — —

QDA 13 1.01 95.45 99.43 1.49 100 98.31 — —

aFor WD-CAIMAN, leave-one-out cross validation was used (ERLOO), 10-fold cross validation (ERcv) was for KNN, LDA and
QDA methods.
bER was calculated by external validation samples in prediction set (EREXT).
cLMO validation was only used in WD-CAIMAN method, by which parameter a was optimized.

(a) (b)

Fig. 3. The curves of total classi¯cation error versus retained variables for KNN, LDA and QDA methods: (a) Cross-validation and
(b) prediction.
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Table 4 lists the ranges of class leverages Lij in
two groups. It is clearly visible that samples have the
smallest leverages Lij (i ¼ j) from the membership
class, i.e., Cd.1 is satis¯ed. However, overlapping
happens between class leverages ranges, such as L11

and L14, L96 and L99, which will be due to class
overlaps in classi¯cation. Therefore, class C5 and C7
can be successfully discriminated from G1, and class
C3 can be separated from G2. For classes with

overlapping range of leverages, the leverage and
hyper-leverage plots are shown in Fig. 4. As the value
of a is set to 0.5, the leverages and hyper-leverages
are both used in the WD-CAIMAN classi¯cation
model. Samples falling in the left top and right bot-
tom corner are very close to the class represented by
the horizontal axis and vertical axis, respectively,
and far from the other one. As shown in Fig. 4, class
C1 and C6 can be discriminated, respectively, from

Table 4. The ranges of each class leverage Lij in group G1 and G2.

Group Leverages C1 C4 C5 C7 Cd.1b Cd.2b Cd.3b

G1 C1a 0.55–3.78 1.66–21.82 75.92–170.27 23.51–80.01
p

C4a 2.70–9.34 0.18–3.58 53.54–93.68 18.80–41.63
p

C5a 31.76–66.50 38.23–65.93 0.19–7.93 35.95–73.23
p p p

C7a 11.26–31.08 17.96–47.33 14.36–85.95 0.61–5.99
p p p

G2 Leverages C3 C6 C9
C3a 0.26–5.34 9.22–28.07 8.52–31.25

p p p
C6a 37.31–151.33 0.58–7.74 8.49–31.35

p p
C9a 11.54–39.20 5.66–16.44 0.44–8.17

p

aRaw i represents the ranges of each Lij with j changes.
bThree conditions used for discrimination.
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Fig. 4. The leverages and hyper-leverages plot: (a) leverages from C1 and C4; (b) leverages from C6 and C9; (c) hyper-leverages
from C1 and C4; (d) hyper-leverages from C6 and C9. The ðþ;�Þ; ð�;	Þ; ð�;WÞ; ð$;rÞ denote (calibration, prediction) samples of
C1, C4, C6, C9, respectively.
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C4 and C9 by a combination of the leverages and
hyper-leverages. This letsus achieve the best result
by WD-CAIMAN classi¯cation model.

5. Conclusion

A new algorithm, WD-CAIMAN, was proposed for
NIR spectra classi¯cation based on the wavelet-
based feature selection and D-CAIMAN discrimi-
nation methods. NIR spectra data set of 265 salviae
miltiorrhizae radix samples from di®erent geo-
graphical origin (nine classes) was used as an ex-
ample to validate the algorithm. The proposed
wavelet-based feature selection procedure was use-
ful to compress the spectra data and make the
classi¯cation model brief and clear. With a com-
parison with KNN, LDA and QDA methods, WD-
CAIMAN shows the best performance, achieving
the total classi¯cation rate of 100% in both cross-
validation and prediction set. It is worth noting that
the WD-CAIMAN classi¯er also shows improved
sensitivity and selectivity in these classi¯cations.
Moreover, the WD-CAIMAN classi¯cation model
has a good interpretability as the results can be
easily interpreted by analyzing the leverage and
hyper-leverage values and no assumption on the
multi-normal distribution is needed.
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